Ca2+-Dependent Synaptotagmin Binding to SNAP-25 Is Essential for Ca2+-Triggered Exocytosis

نویسندگان

  • Xiaodong Zhang
  • Mindy J. Kim-Miller
  • Mitsunori Fukuda
  • Judith A. Kowalchyk
  • Thomas F.J. Martin
چکیده

Synaptotagmin is a proposed Ca2+ sensor on the vesicle for regulated exocytosis and exhibits Ca2+-dependent binding to phospholipids, syntaxin, and SNAP-25 in vitro, but the mechanism by which Ca2+ triggers membrane fusion is uncertain. Previous studies suggested that SNAP-25 plays a role in the Ca2+ regulation of secretion. We found that synaptotagmins I and IX associate with SNAP-25 during Ca2+-dependent exocytosis in PC12 cells, and we identified C-terminal amino acids in SNAP-25 (Asp179, Asp186, Asp193) that are required for Ca2+-dependent synaptotagmin binding. Replacement of SNAP-25 in PC12 cells with SNAP-25 containing C-terminal Asp mutations led to a loss-of-function in regulated exocytosis at the Ca2+-dependent fusion step. These results indicate that the Ca2+-dependent interaction of synaptotagmin with SNAP-25 is essential for the Ca2+-dependent triggering of membrane fusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+-induced changes in SNAREs and synaptotagmin I correlate with triggered exocytosis from chromaffin cells: insights gleaned into the signal transduction using trypsin and botulinum toxins.

Ca2+-triggered catecholamine exocytosis from chromaffin cells involves SNAP-25, synaptobrevin and syntaxin (known as SNAREs). Synaptotagmin I has been implicated as the Ca2+-sensor because it binds Ca2+, and this enhances its binding to syntaxin, SNAP-25 and phospholipids in vitro. However, most of these interactions are only mediated by [Ca2+]i two orders of magnitude higher than that needed t...

متن کامل

Phosphomimetic Mutation of Ser-187 of SNAP-25 Increases both Syntaxin Binding and Highly Ca2+-sensitive Exocytosis

The phosphorylation targets that mediate the enhancement of exocytosis by PKC are unknown. PKC phosporylates the SNARE protein SNAP-25 at Ser-187. We expressed mutants of SNAP-25 using the Semliki Forest Virus system in bovine adrenal chromaffin cells and then directly measured the Ca2+ dependence of exocytosis using photorelease of caged Ca2+ together with patch-clamp capacitance measurements....

متن کامل

Fusion Pore Dynamics Are Regulated by Synaptotagmin•t-SNARE Interactions

Exocytosis involves the formation of a fusion pore that connects the lumen of secretory vesicles with the extracellular space. Exocytosis from neurons and neuroendocrine cells is tightly regulated by intracellular [Ca2+] and occurs rapidly, but the molecular events that mediate the opening and subsequent dilation of fusion pores remain to be determined. A putative Ca2+ sensor for release, synap...

متن کامل

Productive and Non-productive Pathways for Synaptotagmin 1 to Support Ca2+-Triggered Fast Exocytosis

Ca2+-triggered SNARE-mediated membrane fusion is essential for neuronal communication. The speed of this process is of particular importance because it sets a time limit to cognitive and physical activities. In this work, we expand the proteoliposome-to-supported bilayer (SBL) fusion assay by successfully incorporating synaptotagmin 1 (Syt1), a major Ca2+ sensor. We report that Syt1 and Ca2+ to...

متن کامل

Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs.

We investigated the effect of synaptotagmin I on membrane fusion mediated by neuronal SNARE proteins, SNAP-25, syntaxin, and synaptobrevin, which were reconstituted into vesicles. In the presence of Ca2+, the cytoplasmic domain of synaptotagmin I (syt) strongly stimulated membrane fusion when synaptobrevin densities were similar to those found in native synaptic vesicles. The Ca2+ dependence of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2002